Antiviral Research, March 2019
Wei Zhang, Panke Qu, Dapeng Li, Chao Zhang, Qingwei Liu, Gang Zou, Myrielle Dupont-Rouzeyrol, Dimitri Lavillette, Xia Jin, Feifei Yin, Zhong Huang
Summary
Zika virus (ZIKV) infection is a serious public health concern due to its ability to induce neurological defects and its potential for rapid transmission at a global scale. However, no vaccine is currently available to prevent ZIKV infection. Here, we report the development of a yeast-derived subunit protein vaccine for ZIKV. The envelope protein domain III (EDIII) of ZIKV was produced as a secretory protein in the yeast Pichia pastoris. The yeast-derived EDIII could inhibit ZIKV infection in vitro in a dose-dependent manner, suggesting that it had acquired an appropriate conformation to bind to cellular receptors of ZIKV. Immunization with recombinant EDIII protein effectively induced antigen-specific binding antibodies and cellular immune responses. The resulting anti-EDIII sera could efficiently neutralize ZIKV representative strains from both Asian and African lineages. Passive transfer with the anti-EDIII neutralizing sera could confer protection against lethal ZIKV challenge in mice. Importantly, we found that purified anti-EDIII antibodies did not cross-react with closely related dengue virus (DENV) and therefore did not enhance DENV infection. Collectively, our results demonstrate that yeast-produced EDIII is a safe and effective ZIKV vaccine candidate.
https://www.sciencedirect.com/science/article/pii/S0166354219302013?via%3Dihub
Please Sign in (or Register) to view further.